การหาค่าเฉลี่ย

.1 การวิเคราะห์แนวโน้มเข้าสู่ส่วนกลาง
สำหรับข้อมูลเชิงปริมาณที่เก็บรวบรวมมาได้นั้น ค่าพื้นฐานทางสถิติที่สำคัญมากค่าหนึ่งคือค่ากลางของข้อมูล ซึ่งประกอบด้วย
5.1.1 ค่าเฉลี่ยเลขคณิต (Arithmetic Mean , Average , )
5.1.2 ค่ามัธยฐาน (Median , Me)
5.1.3 ค่าฐานนิยม (Mode , Mo)


5.1.1 ค่าเฉลี่ยเลขคณิต (Arithmetic Mean , Average , )
ค่าเฉลี่ยเลขคณิต( ) จัดว่าเป็นค่าที่มีความสำคัญมากในวิชาสถิติ เพราะค่าเฉลี่ยเลขคณิตเป็นค่ากลางหรือเป็นตัวแทนของข้อมูลที่ดีที่สุด เพราะ 1)เป็นค่าที่ไม่เอนเอียง 2)เป็นค่าที่มีความคงเส้นคงวา 3)เป็นค่าที่มีความแปรปรวนต่ำที่สุด และ 4)เป็นค่าที่มีประสิทธิภาพสูงสุด แต่ค่าเฉลี่ยเลขคณิตก็มีข้อจำกัดในการใช้ เช่น ถ้าข้อมูลมีการกระจายมาก หรือข้อมูลบางตัวมีค่ามากหรือน้อยจนผิดปกติ หรือข้อมูลมีการเพิ่มขึ้นเป็นเท่าตัว ค่าเฉลี่ยเลขคณิตจะไม่สามารถเป็นค่ากลางหรือเป็นตัวแทนที่ดีของข้อมูลได้
การหาค่าเฉลี่ยเลขคณิตเมื่อข้อมูลไม่ได้มีการแจกแจงความถี่ ()
ในกรณีที่ข้อมูลไม่ได้มีการแจกแจงความถี่ ค่าเฉลี่ยเลขคณิตสามารถหาได้โดย

สูตร    

เมื่อ xi แทนค่าสังเกตของข้อมูลลำดับที่ i
n แทนจำนวนตัวอย่างข้อมูล

นิยาม ค่าเฉลี่ยเลขคณิต คือ ผลรวมของค่าสังเกตหรือค่าของตัวอย่างที่ได้จากการสำรวจทุกค่าของข้อมูล แล้วหารด้วยจำนวนตัวอย่างของข้อมูล

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s